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1 Introduction

Brain can be considered as a system that generates motor commands for a given perception. Understanding how movement
is generated and controlled still represents unanswered questions [7]. In [3], an arm controller that learns visuo-motor
associations can let emerge immediate and deferred imitation. Visual input activates some attractors in the motor space
that are used to generate a speed command to control the arm. In this architecture, visual information gives the motor
position to be reached. In [2], a Gaussian Mixture based arm controller can enable a robot to reproduce a sequence
of gestures that was demonstrated during a first phase. In [4], a similar Gaussian Mixture model is compared with a
neural network based sequence learner that uses fast learned state/action couples [5]. The comparison is done on a simple
navigation task for which the neural network is designed. The Gaussian Mixture model was adapted for navigation. A
left over issue is whether and how such a neural network architecture could be adapted for arm control in the motor
space. These considerations about arm controlling lead to looking for a model that could work with both visuo-motor
associations and motor state/action paradigms. Several issues are raised as how the attractors can be encoded, what the
parameters of the motor controller are and how they should becontrolled by the system. Some tests on how the attractors
can be constructed have led to a model that defines independent attractors for each articulation of the robot. Biological
data give us hints about answers to some of the raised questions. The basic biological motor action is to contract muscles
and thus to perform force control of the position of the limbs. As we aim at studying how high level and low level aspects
of motor control can be interconnected, we developed a neural network architecture that generates force commands. In
this architecture, the higher level structures converge onan internal representation of the motor position that is provided
to a homeostatic low level force controller. Some part of thearchitecture is tested on a real robot in a simple experiment
as the reproduction of a temporal sequence of gestures demonstrated during passive manipulation. The influence of some
of the parameters that determines the robot behavior reinforces the idea that higher level structures should have specific
accesses to the low level control.

2 A neural network architecture generating force signals for motor control

Figure 1: Left: Global architecture. The internal representation of proprioception can be built from various structures:
visuo-motor conditioning, temporal sequences, spatial sequences etc.Right: Force control part of the architecture.

The force command generator model follows some of the hypothesis developed in the VITE-FLETE model [1] as they
are biologically relevant and enables to realize a minimal motor controller. However, the current model is biologically
less accurate as it does not focus exclusively on the modelization of the biological data but it also aims at being easily
adaptable for motor control in real robots. The gobal architecture of the system (Figure 1) has been designed as a
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primary loop that provides an homeostatic control of an internal representation of the proprioception. Perturbation on
the internal representation can generate the movements of the arm. As shown in Figure 1, the different channels+

and− correspond to the channels of agonist and antagonist muscleproprioception. The force activation signal that is
generated for each channel depends on the desired internal proprioceptionP+/−

d , the current proprioceptionp+/− and
a non-specific energy gainG. This energy gain is part of the Pattern-Energy Factorization used in VITE model [1]. It
relies on biological data that displays the non-specific influence of the Globus Pallidus from the Basal Ganglia on the
strength of the movements. We introduce a fluid friction force as a mechanical constraint from the muscle. The forces are
thus the voluntary agonist/antagonist forcesF+ = G · [P+

d − p+]+ andF− = −G · [P−

d − p−]+ and the friction force
fv = −α · v with [x]+ = 0 whenx < 0, x when0 ≤ x ≤ 1 and1 whenx > 1. The relationp = p+ = 1 − p− links
p+ andp−. According to the equation of classical dynamicm · ˙̇p = F , the continuous dynamical equation of the system
can be simplified in (2). This neural network force generatoris equivalent to a second order “mass damping” dynamical
system for the control of one articulation. This kind of dynamic motor control has been used with success in robotics in
the reproduction of demonstrated tasks [6],[2].

F = G · [Pd − p]+ −G · [p− Pd]
+ − α · ṗ (1)

p̈ =
G

m
· (Pd − p)−

α

m
· ṗ (2)

3 Implementation on a robot and reproduction of a demonstrated gesture

(a) (b) (c)

Figure 2:a: The robot is composed of a Katana electrical arm from Neuronics AG and a monocular camera mounted on
a pan-tilt servo motor setup. In this experiment, only the arm was used.b: The value of the desired position from the
recorded trajectory (black) and the position in reproduction (grey) are compared for one joint of the arm. With a high
energy gain, there are overshoots and oscillation. Here,G = 20 andα = 1. c: A smaller gain enables to have a smoother
trajectory. It also induces a phase shifting and a decrease of amplitude in the variation of position. Here,G = 3 and
α = 10.

This architecture has been implemented in a robotic setup (Figure 2(a)) that is made of a Katana robotic arm from
Neuronics AG with 6 degrees of freedom and a monocular cameramounted on a pan-tilt servo motor setup. The industrial
Katana arm is designed for position control possibly using spline trajectories. An acceleration control is not possible on
this arm. A speed control can be realized by modulating the maximum speed of variation of the joint angle while moving
to extremum positions. There is no direct access to the real joint speed of the arm. The neural network architecture has
been modified to provide speed commands that are generated from the integration of the force signal and an estimation
of the speed. The estimation is based on the time derivative of the position of the joints. In the framework of the french
project INTERACT, a hydraulic robot is going to be built so that the models can be tested without these limitations.

The capabilities of the motor controller of the robot were tested in the reproduction of a passive demonstration. In a
first phase, the robot is set in passive mode ie. a human can manipulate the arm. The movement of two loops is shown
to the robot. The recorded data are then provided to the motorcontrol as the desired positionPd. Figure 3 plots together
the demonstrated trajectory and the reproducted trajectory in the 3D Cartesian space. According to the parameters of the
system, the reproduction can be close to the original trajectory. If the energy gainG increases, the arm tries to follows
each variation of the demonstrated trajectory. The joint position makes some overshoots and oscillates around the desired
position. If the gain decreases, the trajectory becomes smoother, the system does not try to follow each variation of the
demonstrated trajectory (Figure 2). The trajectory is alsosmaller than the demonstrated trajectory even if it respects the
topology of the demonstration: two slightly shifted loops.There is no perfect value for the gainG as having a small and
smooth trajectory can be as interesting as having an accurate reproduction of the demonstration. The evaluation of the
movements can only depend on other factors like a reinforcement signal.
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Figure 3: Trajectory of the end effector of the arm in the 3D Cartesian space. The black line is the demonstrated trajectory
that corresponds to two successive loops. The grey trajectory is the reproduction done by the robot. The reproduction has
been done with different values for the energy gainG and the fluid friction coefficientα. Left: G = 20,α = 10. Center:
G = 20, α = 1. Right: G = 3, α = 10.

4 Perspectives

This work raises the question of the control of the parameters of the low level controller. Self-evaluation of the actionor
social interaction may provide a feedback to determine the adequate values of the parameters, but it is also possible that
they should be learned as well with the movement trajectory.

In the presented experiment, the robot is reproducing a trajectory that was entirely recorded. This is one possible
way of using this architecture. This system will also be tested with the visuo-motor associative architecture to check the
property of emergence of imitation is still present. The state/action paradigm will also be implemented with this system to
study the analogy between arm movement planning and navigation planning. Future work will continue to take inspiration
from biological data to study the structures that can be usedand also how they can be merged all together to increase the
ability of real robots.
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